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Moving loads on ice plates of finite thickness 
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The response of. a floating ice plate to a moving load is given in terms of a pair of 
Green’s functions. General expressions for these Green’s functions are derived for the 
case of an infinite isotropic plate of uniform thickness supported on a fluid base of 
uniform depth. The distributions of stress and strain in the vicinity of it concentrated 
load receive significant contributions from waves of length comparable with the plate 
thickness and their description necessitates an exact description of thickness effects. 
Circumstances in which the classical thin-plate theory can be recovered are 
discussed. The steady-state response to  a uniformly moving load displays a so-called 
‘critical’ behaviour for load velocities in the ncighbourhood of a threshold value at  
which radiation commences. At the critical speed the amplitude is limited by 
dissipative forces in the ice plate. To describe this a simple viscoelastic term is 
included in our model. Calculations indicate that thin-plate theory is accurate to 
within 5% for distances greater than twenty times the ice thickness. 

1. Introduction 
To describe and predict the behaviour of a floating sheet of ice under the action of 

a moving load is a matter of some practical importance. In  both the Arctic and 
Antarctic regions the sea ice is driven over by vehicles and used for runways by light 
aircraft and planes as heavy as 150 tonnes (C141 Starlifters). I n  the cold regions of 
the northern hemisphere, lake ice is driven over by logging trucks and leisure 
vehicles. Heavy, stationary structures such as sleeping quarters and drilling rigs 
have also been mounted on sea ice. 

A number of experimental and theoretical investigations have appeared over the 
years. Early work is surveyed by Kerr (1976). See also Doronin & Kheisin (1977), 
Eyre (1977), Beltaos (1981), Davys, Hosking & Sneyd (1985), Squire et al. (1985), 
Takizawa (1985). Our purpose here is to describe some elaborations of the classical 
theoretical model (Nevel 1970). These elaborations, which are concerned with the 
effects of damping and finite plate thickness, are needed for the interpretation of 
some recently obtained data from Antarctica (Squire et al. 1988). These include 
measurements of the strain induced in a 2 m thick ice sheet a t  distances of 1 to 800 m 
from the path of vehicles moving a t  speeds of up to 90 km/h and low-flying aircraft 
(<300 km/h). Some of the measurements are from points relatively close to the 
path, and their theoretical representation cannot depend on the use of asymptotic 
approximations or the neglect of thickness effects. It is therefore necessary to go 
beyond the Euler-Bernoulli type of approximation and to treat the ice sheet as an 
elastic plate of finite thickness. Other measurements refer to vehicle speeds near to 
the so-called ‘critical ’ value of - 70 km/h. This critical value corresponds to a 

t On leave of absence from ICTP, Trieste, Italy. 
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threshold at  which radiative phenomena set in. The classical model for the steady- 
state behaviour fails at the critical point owing to its neglect of dissipative effects. To 
describe the critical response it is essential to  include such effects (Hosking, Sneyd & 
Waugh 1988). For these reasons we undertake a theoretical description here which 
includes both thickness and damping effects. We shall not treat the experimental 
data as they will be dealt with in a later paper. 

There are many uncertainties in applying a simple model to describe the observed 
data. Among these are the effects of irregularities in the thickness and composition 
of the ice sheet, in its temperature distribution and mechanical properties. The 
underlying water will generally be layered (Schulkes, Hosking & Sneyd 1987). There 
may be currents and non-uniformities on the bottom, islands, edges, etc. There may 
be a significant amount of pre-stress (Kerr 1983) due to water and air currents. Some 
of the data may be contaminated by transient effects such as the acceleration of the 
load, which a t  this stage, we are not prepared to accommodate. In the case of static 
loads it will be important to consider plastic (creep) as well as elastic behaviour. 

Many severe and probably unrealistic simplifications are made in the model 
discussed here. Although it has been shown that time-dependent effects may be 
important in interpreting experimental data (Schulkes & Sneyd 1988), we shall deal 
only with a uniformly moving load and its associated steady-state response pattern. 
The ice is modelled by an isotropic plate of uniform thickness supported on an 
incompressible, non-viscous fluid base of uniform depth and composition. On the 
upper surface of the plate a moving load is distributed. The resulting strain 
distribution is to be described. 

The problem divides naturally into two parts. Firstly, there is the response of the 
elastic plate to the applied surface forces: the load on the upper face and the fluid 
stresses on the lower face. Secondly, there is the fluid motion governed by the 
boundary conditions on the bottom and at  the surface where i t  supports the plate. 

The elastic plate is taken to be isotropic but not necessarily thin. It is characterized 
by several parameters : two elastic moduli, mass density, thickness and frictional 
parameters. For most purposes it would be enough to restrict consideration to waves 
that are long in comparison with plate thickness. The plate motion is largely flexural 
and the classical Euler-Bernoulli description is adequate. One of our aims, however, 
is to  describe the response of the plate to a concentrated load. If the load size is small 
enough, then waves of length comparable with the plate thickness will be significant, 
a t  least in the vicinity of the load itself. Such waves are not adequately described by 
the classical theory. For example, the maximum strain tends to grow logarithmically 
with inverse load size in the classical theory, but quadratically in the more exact 
theory. To show this we shall treat the plate as a three-dimensional isotropic material 
with prescribed distributions of force on its upper and lower faces. In  the horizontal 
direction it extends to infinity. A very efficient method for treating this kind of 
problem has been developed for seismic waves (Kennett 1983) and we shall use it in 

The boundary forces on the lower face are due to the action of the fluid. To obtain 
them it is necesary to solve the fluid problem subject to the condition that the fluid 
joins smoothly to the lower surface of the plate. One then computes the fluid stress 
tensor a t  the interface. The end result of this computation is a set of equations 
relating boundary forces to  plate displacements on the lower surface. 

The water will be treated as an incompressible non-viscous fluid in the linear 
regime of the Navier-Stokes equation. It is characterized by two parameters : density 
and depth. For most purposes the viscosity can be neglected. However, viscosity is 

§2. 
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easily allowed for and a treatment including it is given by Strathdee, Robinson & 
Haines (1989). 

Previous treatments of this kind of system have generally been restricted by the 
thin-plate approximation. Waves of length comparable with or smaller than the 
plate thickness are neglected. There are two independent justifications for this. 
Firstly, the load distribution may be sufficiently ‘soft’, i.e. such that its Fourier 
representation is composed of long waves only. Alternatively, even when the load is 
concentrated, the response a t  sufficiently large distances can be dominated by long 
waves. There are two questions concerning the validity of the thin-plate 
approximation. First, in what circumstances is the response at  sufficiently large 
distances dominated by long waves? We shall show that for the thin-plate 
approximation to be mathematically consistent it is necessary that a certain 
dimensionless coupling parameter should be small : 

where p is the density of water, g the acceleration due to gravity, h is the plate 
thickness, G is the shear modulus, and v is Poisson’s ratio. For the Antarctic sea ice, 
parameter values of which are given in table 1,  p2 is of order and we expect the 
thin-plate approximation to give an accurate description at sufficiently large 
distances. However, to describe the near-field strain pattern it will be necessary to 
retain the short-wave contributions and work with finite-thickness-plate theory. 
Second, what is a sufficiently long distance 1 Because of the complexity of the thick- 
plate expressions, this can only be answered by calculating the thick-plate solutions 
numerically and comparing them with the thin-plate solutions. Our calculations for 
stationary loads indicate that thin-plate theory is accurate to within 5% for 
distances greater than twenty times the ice thickness. 

When the load is moving with constant velocity, and the transients have died 
away, the resulting steady-state response is best described in a co-moving frame of 
reference where it appears as a stationary wave pattern. The pattern clearly depends 
on the speed, U, of the load and its forward-backward asymmetry will increase with 
the speed. There is a critical speed, U,, below which the wave amplitude falls 
exponentially with distance from the load. This decay law, exp(-r/Z), defines a 
characteristic length, 1, given approximately by 

1 = (6p2)-% = gr, 
where D = Eh3/ 12( 1 - v2) is the flexural rigidity of the ice plate and E is its Young’s 
modulus (Nevel 1970). For greater speeds, U > U,, energy is radiated and the wave 
amplitude falls like r d .  The dominant waves in the radiation have lengths of order 
1. Kear the threshold speed, U - U,, the response is limited by internal friction in the 
ice sheet (Squire & Allan 1980; Bates & Shapiro 1981). In the treatment to be 
described in the following, the internal friction is allowed for by using complex 
frequency-dependent elastic moduli. We find that the wave amplitude at critical 
speed is proportional to 7-a and that it is exponentially damped on a distance scale 
OCT-;, where 7 is a relaxation time. As the speed is increased the forward-backward 
asymmetry is accentuated. The waves represent coupled modes of the elastic plate 
and the fluid base: the forward component is progressively dominated by shorter 
elastic waves and the backward component by longer, gravity waves. At higher 
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h = 2 111 
H = 300 m 
p = 1040 kg m P  
rn = 850 kg m-3 
G = 3 x los J m-3 
D = 6~ lo9 J 
v = 0.3 

1 = 2 8 m  
(g2)f = 17 ms-l 

(gH)r = 55 m9-l 

p = 2 x 10-3 

p"(oj = 1 0 4 ~ - 1 0 ~  
( / / g ) i  - 1 s 

u = 0-100 m/s 

plate thickness 
sea depth 
water density 
ice density 
shear modulus 
flexural rigidity 
Poisson's ratio 
coupling parameter 
characteristic length 
characteristic speed 
upper critical speed 
total load 
characteristic time for motion 
vehicle speed 

TABLE 1. Typical sea ice parameters 

speeds the pattern develops caustics, a kind of bow wave. There is an upper threshold 
speed Ucl ,  at which the backward wave becomes infinitely long. For I ; >  U,, the 
backward wave is extinguished. A 'shadow region' develops (Davys et al. 1985) in 
which the pattern is exponentially damped on the scale, l ( ( U 2 / U ~ , )  - l)-i.  The upper 
critical speed is given by U,, = ( g H ) ; ,  where H is the fluid depth. (This threshold is 
contained in the range covered by the Antarctica data, Squire et al. 1988.) 

The general theory is set out in $ 2  where the thick-plate problem is solved in terms 
of a pair of Green's functions. By this we mean that the distributions of stress and 
strain throughout the plate are represented by Fourier integrals involving Green's 
function kernels folded with a loading distribution. The stationary limit and, in 
particular, its asymptotic form is considered in $3.  Hew it is possible to see clcarly 
how the exact solution deviates from the thin-plate approximation in the vicinity of 
the load. Section 4 is devoted to a more general consideration of the asymptotic 
distribution for the steadily moving load. The important consequences of damping 
in the ice for the threshold behaviour are discussed. In  $5  we present some numerical 
examples. Some conclusions and discussion are given in $6.  

2. Formulation 
The dynamical variables of the system are two vectors, the plate displacement, u,, 

and the fluid velocity, v,. We suppose that the plate is uniform and isotropic, that 
the displacements are small enough for linear elastic theory to apply, and that there 
is no pre-stress. The fluid, of uniform depth and composition, in inviscid and 
incompressible. 

The coordinate system is chosen so that, at equilibrium, the fluid surface and plate 
underface coincide with the plane, z = 0. The upper face of the platc is given by z = 

h > 0 and the bottom of the fluid by z = - H < 0. Fluid and plate extend without 
limit in the (z,y)-directions (see figure 1). 

The components of the stress tensor, q8, are constructed from the dynamiral 
variables, u, and v a :  

O < z < h  (S.lC/) 

- - H < x < O  (2.1 h )  
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FIGURE 1 .  Diagram of floating ice sheet, showing a uniaxial load q moving with a velocity u in 
the x-direction. 

where the shear modulus G and Poisson's ratio v may be complex and frequency 
dependent. 

In these expressions Greek indices a,b,y refer to the coordinate axes, x, y,z. 
Partial derivatives are indicated by a, = a / a e  and the summation convention is 
assumed, aY uy = a, u, + a, uy + a, u,. It will be useful in the following to distinguish 
the z-axis and use italic indices for the x, y axes, e.g. a,u, = a,u,+a,u,. 

To complete the dynamics we need the mass densities, m for the plate and p for the 
fluid. The equations of motion are then given, in the linear regime, by 

ma,2ug= a,qg-ap((mgz), 0 < z G h, (2 .2a)  

p a t V ,  = a,T,p-ag(pgz), -H G z <o.  (2 .2b )  

By considering the equilibrium of a small volume which straddles the interface, z = 
0, one obtains the condition that T,, should be continuous there, 

(2-3) 

In addition it is assumed that there is no cavitation of the fluid relative to the plate, 

v, = atu,, z = 0. (2.4) 

v , = O ,  z = - H .  (2.5) 

TiFid = Tplate ,, , z = o .  

A t  the bottom the normal fluid velocity is assumed to vanish, 

The boundary data are completed by prescribing a load distribution on the upper 
face of the plate. For simplicity we shall assume a uniaxial stress in the vertical 
direction, 
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The aim of this calculation is to find expressions for the strain components, 

s a, = -( aau,+a,u,) 

near the upper face. One needs to compute these components for various loads, q. I n  
view of the symmetries of this problem, it is natural to use Fourier integral 
representations with respect to  x, y and t ,  

(2.7) 

The end result of the dynamical computation will then be integral expressions for the 
required components, 

where Green's function, G,(k, w )  incorporates the various parameters and boundary 
conditions introduced above. The exact form of G,, is complicated and our interest 
is mainly in approximations. It is worth mentioning, however, that both Gap and @ 
can be analytically continued in kj  and w .  They are both real analytic in the sense 

(2.9) 

and G,, must be free of singularities in the region, Im w c 0 ,  Im kj = 0. 
For the case of a uniformly moving load there is a simplification. Suppose the load 

is applied at t = 0 and thereafter moves with constant speed, U,  in the x-direction, 

@(k, w)*  = q( - k*, - w * ) ,  

, t < 0 ,  
t > 0. (" q(x-ut, y), 

4(X,Y,t) = 

The Fourier transform of this loading is given by the inverse of (2.7), 

(2.10) 

(2.11) 

where q"(k) is the two-dimensional Fourier transform of q(x, y). On substituting (2.11) 
into (2.8) and integrating over w ,  various terms arise. Those associated with 
singularities of G,, are transients and will eventually die away. Only the singularity 
of q(k, w )  a t  w = Uk,, will persist as t becomes large. It will give rise to the steady- 
state pattern, 

(2.12) 

In  a coordinate system co-moving with the load, the dependence on t disappears. 
The computation of Gap(k,w) involves a rather lengthy analysis of the system 

(2.1)-(2.6). In  the following we shall treat the equivalent problem of computing the 
components of the displacement vector u, and stress tensor Tap. We shall deal firstly 
with the fluid, the purpose being to compute T,, at  z = 0 in terms of the velocities, 
atu,. This information is then used as input for the plate problem. 
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The velocity and pressure distributions in the incompressible fluid are obtained by 
solving the equation of motion (2.2 b) or 

P a, vp = - a&P + P94 

apvp = 0 

together with the continuity condition 

subject to the boundary conditions (2.4) and (2.5). By introducing a velocity 
potential Q such that u = VQ, it is straightforward to solve this system for wave-like 
modes. The calculation is essentially the same as that for gravity waves in water of 
uniform depth (see, for example, Lighthill 1978). This solution for irrotational flow 
has a non-zero tangential velocity a t  the boundaries. In a viscous fluid all 
components of the fluid velocity are zero a t  a solid boundary; however, the non- 
viscous solution can still apply in a viscous fluid if there is a thin dissipative 
boundary layer between the irrotational flow and the surface (Lighthill 1978). When 
the results are substituted into (2.lb) a t  z = 0 one obtains, using the boundary 
condition (2.4), 

( 2 . 1 3 ~ )  

q, = 0, (2.13b) 

where k = ( k ~ + E ~ ) ~  and th  denotes the hyperbolic tangent. 
These equations are now to be thought of as boundary conditions on the plate 

stress a t  z = 0. 
For the plate dynamics it is useful to follow the method of the seismologists 

(Kennett 1983) and arrange the equations of motion in the form of first-order 
differential equations in z (after Fourier transforming with respect to z, y and t ) .  In 
this arrangement the displacements, ua, and stress components, T,,, are treated as 
independent variables. In  effect, the equations (2 . la )  and ( 2 . 2 ~ )  are on the same 
footing. For 0 < z < h, eliminating the subsidiary variables T,, using the a*- 
independent equations contained in (2.1 a ) ,  one writes 

1 1-2v V 
a,u, = -- T,, -= a, u,, 2G 1 - v  

1 
G 

aZuI = -q , -aIuz,  
(2.14) 

which comprise six equations for six variables. They can be separated into a set of 
four and a set of two, the P-SV and SH systems of elastic wave theory (see, for 
example, Jeffreys 1976), respectively, by introducing potentials. Write 

(2.15) 

where eIk = -ekI and e12 = 1.  Since ell and eZ2 are zero the system could be solved by 
decomposition into Helmholtz equations. We use a procedure, outlined below. whivh. 
in a uniform medium, is equivalent to solving the Helmholtz equations. but which 



44 J .  Strathdee, W. H .  Robinson and E .  M .  Haines 

makes the incorporation of the boundary data more straightforward. After taking 
Fourier transforms one obtains, finally, 

- 1 -  
az+u = G + T ?  

a, GT = (Gk2- mu2) $u ; 

1 1 -2v-  V 

2G 1 - v  l - v  a.ii =-- T,,+-k26,, z z  

- 1 -  
a z # u = ~ # T - c ~ '  

a, ez = k24T - mu2Gz, 

= GEz+(--mu2)$u. V 2Gk2 
1 - v  

The pair (2.16) is solved by 

(2.16) 

(2.17) 

(2.18) 

where gu0 and GT0 denote the values of 3, and GT on the lower face, z = 0, ch and 
sh denote hyperbolic cosine and hyperbolic sine respectively, and ys is an effective 
wavenumber defined by 

y s =  [ k2-- m:2]:, Rey, > 0. (2.19) 

The system (2.17) is rather more complicated but it can be solved by making a 
change of variablest 

(2.20) I G, = us+up 

4, = $hs + #P 
Ez = 2Gk2qY+(2Gk2-mu2)#p 

1 
$T = 2 (2Gk2 - mu2) us + 2 G ~ p  

which leads to a separation of the equations. They are solved by 

(2.21a) 

(2.21 b)  

where ys is given by (2.19) and yp by 

(2.22) 
1-2v mu2 

, Reyp>O.  k2--- 1 2 ( 1 - ~ )  G 

t We are indebted to A. J. Haines (private communication) for this observation. 
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The results (2.21) can be substituted back into (2.20) to give the solution of the 
equations (2.17) in terms of boundary data on the face z = 0. One finds 

I (2.23) 

where A,  . . . D are 2 x 2 matrices, listed in Strathdee et al. (1989), with elements which 
arc rcgular in the neighbourhood of o = 0, kj = 0 so that the low-frequency and long- 
wave limits are well defined. 

The solutions (2.18) and (2.23) express the displacements and stresses as functions 
of boundary data on the interface, z = 0. To solve the problem of a load on the upper 
surfacc z = h we need the displacement and stress as functions of boundary data on 
z = h. The required expressions can be found by straightforward algebra (details in 
Strathdee et al. 1989) to be 

I - 1 Ch(y,z)$Th, 
4 =-- 

G y ,  sh(y,h) 

[ tz]  = (A(z)+B(z)E)(C(h)+D(h)E)-l 

[ 5'1 = (C(Z) + D(z)  E )  (C(h) + D(h) 

$ti 

$2, 

(2.24) 

where, for a non-viscous fluid, E is the 2 x 2 matrix ("d' :), where 

E -  PO2 
l l  -pg-kth(kH)' 

The assumed loading (2.6) on the upper face corresponds to the prescription 

(2.25) 

(2.26) 

On substituting these into (2.24) one finds that the transverse response, $,, vanishes 
whereas the longitudinal system defines two Green's functions, G ,  and G,, such that 

iZz = G ,  Q and 6u = G,Q. (2.27) 

For a general loading the Green's functions would involve more components. If, 
instead of (2.26) we have czh = Q, J T h  = r" and $Th = s", where Q, r", and s" are specified 
then the gcncral solution takes the form 

6, = G,s", [tz] = 
$U 

where G, and G, are given by 

where N(z) = A(z )  + B(z) E, M = C(h) +D(h)  E. (2.28) 

The Green's functions G ,  and C ,  are just the 11- and 21-elements of the matrix G,, 
but they suffice for the uniaxial loading. 
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According to (2.24) and (2.27) 

The dispersion rule for the coupled system defines the locus of singularities of the 
Green's functions. It is given implicitly by the equation 

0 = MUM22 -M12M21. (2.30) 

The Green's functions (2.29) are quite complicated in the general case and so in the 
following we shall be examining various approximations. To conclude here, we list 
the general expressions for the components of the strain tensor in the plate 

(2.31) 

For future application, we give the right-hand sides of (2.29) for z = h and zero 
fluid viscosity. To streamline the notation it is useful to introduce scaled variables, 

mh2w2 c = -  Ell h 
2G * 

K = k h ,  c = y , h ,  r p = y p h ,  Q2=- 
2G ' 

The combinations appearing in (2,29) then reduce to 

NllM22 -N12M21 

N21M22 -N22M2, 

= "[ - ( K 2  -Q2) (2K2-Q2) (ch chTp- 1)  
524 

MllM22 -M12M21 

= E)2 & [ - 2K (2K 
- 02) (ch ch rp - 1 ) 

+ ( ~4r ,r~+ (K2-02)4)sh&shrp r S r p  

shr,chrp)l r, sh r, ch & - ( K 2  - 522)2 

(2.32) 

(2.33) 
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For w2 < Gk2/m, that is U < (G/m)i x 2 x lo3 ms-', equations (2.19) and (2.22) can 
be expanded in powers of w2. Consequently, for practical values of the vehicle speed 
U ,  (2.33) may be written 

N,,M,, -N,,Jf,, = - (a, +b, u2),  (2.34 a) (23 
where o,, = (1 - 5)  [K + K chKshK+ p2 sh2K], 

1-e+2(1--)sh2K+($+1) 

chKshK (2.34 b) 
+b2[2(l-5') K 

chKshK 
K (-2$+5$-44g+1)+2(5-g3) 

where a d  = (1 - 5)2 [K2  sh2 K - K 4  + p2(K + K chKshK)], 

4 ( c  -25 + 25- 1) sh2K- 2 ( 6 - e  -[+ 1) K chKshK 

-2(c-33$+35- 1)K2+P2 -2(c-p-5+ 1) sh2K 

1 -(c-e-C+l) -4r(l-[)[K+chKshK] 
chKshK '(c-e'c-') K 

and P 
2m th (kH) r =  (=- 1-2v Pgh 

2( 1 - v) ' P2 = 2G( 1 - 5) ' 

3. Stationary limit 
In this section we discuss the zero frequency limit of (2.33). This limit corresponds 

to a stationary load. In this context we take the 'steady-state' solution to mean the 
solution that applies at  timescales long compared with transients but short compared 
with creep phenomena, hence we do not consider the effects of creep. 
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From (2.29) and (2.34) the zero-frequency limits of the Green’s functions G, and 
G, on the upper face, z = h, are 

shKchK sh2K 
1 

_. h K + p ” F  

OK2\= 1-C K ) 

Equally simple results could be obtained for the derivatives a,G+ and a,G,, 
evaluated on the upper face, but we shall not pursue this computation. The object 
of prime importance here is the Green’s function G,, given in (3.1), from which it is 
possible to compute the in-plane components S,  of the superficial strain, using (2.31). 

Now consider the long-range form of the static integrals. They are generally 
dominated by exponentially decreasing terms associated with poles of the Green’s 
functions in the half-plane, I m K  > 0. According to (3.1) such poles are given by 
solutions of the equation 

0 = Sh2K-K2+p2(l+ sh K ch “3 
and in G, there is a pole a t  K = 0 which must be taken into account. The equation 
(3.2) has infinitely many solutions but, for an asymptotic development, one needs 
those nearest the real axis. The investigation is much simplified by the fact that p2 
is a small parameter in cases of interest ( -  for Antarctic sea ice) and a solution 
is obtained by expanding in powers of K, 

0 = 1 ~ 4 + 2 p 2 +  .... (3.3) 

16P21?1 +W)) (3.4) 

Thus, one finds a zero a t  the point 

K x ein14 

and another a t  the conjugate point -K *. The long-range field is therefore dominated 
by the damped oscillations 

- Re [eiKr/h 1 
= Re [exp ( - 1 + i )  ($3’);r/h]. 

The decay length is given by (Zp2)-i h = 2/21> (3.5) 

where 1 is the characteristic length mentioned in 3 1. 
One may conclude that, because of the small magnitude of p2, it is adequate for 

asymptotic purposes to retain only the leading terms in an expansion in powers of K : 

h 1 
G ,  x 

2 ~ ( 1 - c )  g ~ + p ’  
1 . h2 1-2< 1 h2 +--- G ,  x - 

4G(1-[) tK4+p2 2G 2(1-c)K2’ 
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The pole at K 2  = 0 gives rise to a long-range shear strain which is independent of 
plate thickness as well as fluid density. It takes the form 

Since it falls like r+, this term must eventually dominate the exponentially decaying 
contributions. (The exponential term, due to the singularity (3.4), is discussed in $4. 
See (4.16).) They become comparable when 

or 

With P equal to a few thousandths this equation suggests that the power-law term 
(3.7) will begin to dominate the strain a t  r - 151, but this is beyond the range of 
practical significance. 

At the other extreme, the response a t  very short distances is dominated by the 
large wavenumbers. For this limit the smallness of P is irrelevant and the thin-plate 
approximation cannot be used. For example, the static Green’s functions on the 
upper face (3.1) give 

= !-? 4xG I d 2 d q ( d )  In Ix’ - X I  + . . . , 
where the Euclidean distance from x’ is indicated, 

Iz’ -XI = [(X’ - X ) 2  + (y’ -y)”l’. 

( 3 . 9 ~ )  

(3.9b) 

(3.10) 

In  this approximation, the short-distance distributions of displacement on the upper 
surface are independent of plate thickness. They are qualitatively different from 
what would be obtained from a naive application of the thin-plate approximation. 

The vertical and horizontal displacements are easily found either by using a fast 
Fourier transform routine to calculate the discretized transforms of (3.1) or by 
converting to the Hankel transforms 

G,(r) = 2- J Gu(k) Jo(kr) kdk, 
0 

d dr G&k)J,(kr) k 2 d k ,  

( 3 . 1 1 ~ )  

(3.11b) 
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FIQURE 2. (a )  Vertical displacement versus distance from load computed using ( 3 . 1 1 ~ )  and (3.1) 
(solid line) compared with the thin-plate expression (4.16) (dashed line). The vertical line a t  r = 
13.7h marks the characteristic length given by (3.5). ( b )  Horizontal displacement as a function of 
distance from the load in the static case. The ice sheet thickness h = 2 m which corresponds to a 
value of 0.48 x 10P for the coupling parameter /3' using the parameters shown in the table. 

0 10 20 30 40 50 

which facilitates the comparison with the large-r expression (4.17), and the small-r 
expressions (3 .9) .  Figure 2 shows the vertical and horizontal displacements as a 
function of r .  Figures 3 and 2 ( a )  compare the vertical displacement computed using 
( 3 . 1 1 ~ )  with the small-r expression ( 3 . 9 ~ )  and the large-r (asymptotic thin plate) 
expression (4.16). The l / r  singularity a t  the origin is an artefact of the &function 
load; for a load covering a finite area the response would be finite. For h = 2 m the 
asymptotic thin-plate ( r / h  %- 1)  approximation is accurate to within 5% for r 2 20h 
and to within 10% for r 2 15h. So, as could be expected, the asymptotic thin-plate 
approximation is useful for r I ,  where 1 is the characteristic length given by (1.2). 
Similar results were found for other values of h in the range 1-100 m and also for the 
horizontal displacement. 
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10-8 lo-& 10.' 10-3 lo-* 10-1 10-0 

r l h  
FIGURE 3. The vertical displacement versus distance from load computed using equations (3.11 a) 
and (3.1) (solid line) compared with the small-r approximation ( 3 . 9 ~ )  (dashed line). For these 
calculations h = 2 m and p' = 0.48 x 

4. Asymptotics and damping 
In this section we review the qualitative behaviour of the steady-state pattern as 

the load speed is varied, including the effects of damping. To do this we use small- 
k expansions of the expressions giving G, and G, corresponding to  the thin-plate 
approximation which we show to be consistent when p2 4 1.  Details of our 
mathematical development are given in Strathdee et al. (1989). For a comprehensive 
description of steady-state behaviour in the thin-plate approximation, see Davys 
et al. (1985), Schulkes et al. (1987) and Hosking et al. (1988). 

The long-range behaviour of Fourier integrals - such as formula (2.31) for the 
strain generated by a moving load distribution - is governed by singularities of the 
integrand. In particular, for the uniformly moving load, the steady-state pattern is 
dominated a t  large distances by the contributions of simple poles in the Green's 
function, G ,  and Q,, defined by (2.29). These poles are necessarily among the zeros 
of the function 

(4.1) 

where C(z), D(z) and E are the 2 x 2 matrices mentioned in $2. The determinant (4.1) 
is a function of k,, k, and w in general but, for the steady-state pattern, is restricted 
to the subspace, w = Uk,,  where U is the load speed. 

Owing to  the small value of the parameter p2, defined by (2.34), the asymptotically 
important zeros of d e t M  occur a t  small values of K = hk. The thin-plate 
approximation is therefore appropriate for their determination, exactly as discussed 
above in the static case. 

Another simplification concerns the roles of damping terms. These generally act by 
causing small imaginary displacements in the zeros of detM. If  the zero was 
originally lying on the real axis, then it would be shifted so as to make the Fourier 
integral well defined. Once the integration contour has been correctly routed around 
the singularities, the damping may be turned off. The integral will not be particularly 
sensitive if the damping is weak. However, this will not be true if i t  should happen 
that two zeros of d e t M  come together in such a way as to pinch the integration 
contour when the damping is removed. The integral in this case is sensitive to the 

det M = det (C(h)  + D(h) E )  
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small damping and, indeed, would diverge in the limit of vanishing damping. For the 
problem at  hand there is one critical speed, U = U,, at  which this happens. It is 
associated with the threshold for the onset of energy radiation. The pinch is averted 
by taking into account the damping of the plate. 

There is another threshold, U = Ucl,  associated with the extinction of the 
backward wave, a t  which two zeros of d e t M  come together in the absence of 
damping. In this case, however, the zeros both arrive on the same side of the contour 
and so do not pinch it. The integral remains well defined when the damping is 
removed. 

Expanding det M and the numerators of the expressions (2.33) in the small-K limit 
assuming p2 4 1 (the thin-plate expansion) one finds 

D ( o ) k 4 + y g - d  ( 4 . 2 ~ )  

(4.2b) 

where the coefficient D ,  which may be frequency dependent in (4.3a), is the flexural 
rigidity, defined by 

1 Eh3 
D(w)  = ;( 1 - 5) Gh3 = - - 

12 1 - v2' 
(4.3) 

The approximate Green's functions (4.2) are intended to incorporate the singularities 
whose contributions will dominate the asymptotic behaviour. They can be used only 
for the asymptotic analysis and not for the general strain and displacement 
distributions. 

Note that G, vanishes a t  k2 = 0 if w2 is non-vanishing. This means that G, is 
regular a t  k2 = 0 and there will be no long-range contribution at finite frequency. 
However, if w = Uk, is substituted into (4.2) then, near k = 0 ,  

p gHk2 - U2ki '  
H 

G, X- 

(4.4) 

Although G, is bounded as k j + O ,  it  appears that G, is singular. This singularity 
yields a l /r2 term in the asymptotic strain and generalizes the static result (3.6). The 
static tail in the &rain field given by (3.7) is here generalized to 

where v2 = U 2 / g H  < 1. This contribution, which follows an inverse square law, will 
eventually dominate the asymptotic pattern. 

Now consider the asymptotic behaviour of the displacement field u, generated by 
a load moving with speed U .  The singular part of the integrand is approximated by 
the expression (4.3~) with w = Uk,. In  a eo-moving frame we have 
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where B(k)  is given by 

B(k) = D(Uk,)k4+pg-U2k: (4.7) 

and I>( l i k , )  is given by (4.3) with w = Uk,.  The asymptotic expansion of (4.6) can be 
extracted by standard methods (Lighthill 1978). Consideration of the asymptotic 
expansion shows that aB/aE, = 0 corresponds to the coalescence of a pair of 
singularities which happens a t  the threshold. The rotated integration variable El is 
given by 

where 0 is the angle between the direction of motion and the direction in which the 
asymptotic field is to be assessed. 

El = k,cosO+k,sinB, E2 =-k,sinO+k,cosB, (4.8) 

This point is characterized by three conditions : 

= 0, 
a ReH 

= 0, ~ ReB=O,  - 
a R e B  

a h  ak2 
(4.9) 

which determine the critical wave vectors ( f k,, 0) and the critical speed, U,. If the 
small damping term is taken into account then, a t  U =  U,, the solutions will be 
displaced to  complex values of (k,, k,) near to tthe critical points ( k,, 0) and aB/aE, 
will be proportional to the damping parameter. 

Very approximately, one expects to find 

I (4.10) 

where I is the characteristic length (Nevel 1970). The consistency of the thin-plate 
approximation requires 

h 
1 

hk, - - = (6P2)i < 1.  

To analyse the wave pattern in the critical region, we can approximate the function 
B by a quadratic form, 

B = -a2  +b(k,- k,-d), +c(k,)2+. . . , (4.1 1 )  

where a2 and d are small quantities, proportional to (U2-Uu,2). It is then 
straightforward to  evaluate the asymptotic field, 

The parameters a ,  . . . , d are obtained from (4.7) by expanding in powers of k, - k,, k, 
and u2-uE. 

The effects of damping can be explored by modelling D(w)  by the Debye relaxation 
formula together with the assumption that WT - Uk,7 is small. We therefore write 

Do + iw7 D, 
1 + iw7 

D(w) = x Do+iyw (4.13) 

where 7 = (D ,  -Do) T .  
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With wr small and U - U,, the parameter a is small and complex, 
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a - [(&-l)(Dk:+pg)+iyUkt It , I m a  > 0, 

while bd2 is negligible in comparison with a2, and b,  c are finite and essentially real. 
The amplitude (4.12) contains the factor 

la!-; - [(g-l)s (Dk4,+pg)2+72U2k10 ,I’ 
and will exhibit a resonant-type peak as Upasses through the critical value. The peak 
amplitude is proportional to 7-f and decreases exponentially with distance from the 
load, the damping length being of order 

(4.14) 

In this formula, 7 is a relaxation time representing the dissipation in the plate and 
1/U, k, - ( l / g ) i  is a characteristic time for the threshold motion. 

Next consider the other threshold, U = U,, = (gH);, a t  which the backward wave 
is extinguished. For U < U,, the zero of ReB is near the origin and we can use a 
Taylor expansion about the origin. 

For the strictly backward wave only, the asymptotic wave is given by 

This amplitude vanishes a t  the critical speed. 
This concludes the qualitative discussion of the radiative phenomena generated by 

a moving load. For speeds below threshold, U c U,, there is no radiation. This means 
that Re B has no real zeros. I n  order to apply the asymptotic formula it is necessary 
to search for zeros in the half-plane Im kl > 0. For example, in the static limit, with 

B = D,k4+pg, 

the asymptotic displacement formula for the static case is given by 

(4.16) 

The asymptotic pattern is therefore an exponentially damped wave of length 2/21. 
For non-vanishing load speeds the exponential damping will persist albeit with 
angular variation and a lengthening of the damping scale from d21 at  U = 0 to 
something like the scale indicated in (4.14) at U = U,. 

5. Examples 
To demonstrate the way in which the ice displacement depends on the speed of the 

load we calculated the vertical displacement as a function of distance along the line 
on which the load was moving (the x-axis) for various speeds. We considered speeds 
from 0 ms-’ to  45 ms-l covering the range both above and below the critical speed, 
which was found to be approximately 21 ms-l by numerical solution of (4.9) using 
the parameters shown in table 1.  For these speeds the small-o expressions (2.34) must 
be used for numerical work because large cancellations in (2.33) make them 
numerically unstable. 
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FIGURE 4. The real part of the shear modulus (dashed line, right-hand scale) and the coefficient of 
internal friction (solid line, left-hand scale) as a function of frequency in the assumed model of the 
damping. 

The vertical displacement for a point load is given by 

where G,(k,, k,) is given by ( 2 . 3 4 ~ )  and (2 .34~)  with w = Uk,. For distributed loads 
the displacement can be found by convoluting (5.1) with the load distribution 
p(x, y) (see (2.11)). The main effect of this will be to smooth out structures in the 
displacement versus distance curve with lengthscales less than the lengthscale of the 
load distribution. For load speeds below the critical speed the displacement is easily 
calculated by discretizing (5.1) and using a fast Fourier transform routine. For load 
speeds above the critical speed the denominator (2 .34~)  has real zeros which make 
the calculation of (5.1) unstable. To overcome this problem we use the fact that, if 
the contour Im (k,) = h completed a t  infinity encloses the same.poles as the contour 
Im (k,) = 0 completed a t  infinity, then by Cauchy's theorem 

+ ih, k,) e-i(kz(X+iA)fkv G,(k,, k,( e-i(kzx+kyy) dk,dk,, 

so G,(x )  = e+..[ ~ ~ , G , ( k , f i h ,  ky)e-ikzzdk, 1 dk, 
-m 

(5.2) 

for y = 0. (Depending on the behaviour of the poles of G,(k,, ku) it may be necessary 
for A to  vary with k,.) 

Physical damping must be included in the calculations so that the integrals do not 
diverge near the critical speed. This is accomplished by taking the shear modulus 
(and at least one of the bulk modulus and Poisson's ratio) to be complex and 
frequency dependent. Since the dominant frequency of the radiated waves depends 
on load speed, we used an approximately constant damping over the range w = 

se2 to w = lo2 s - ~  given by 
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FIGURE 5(a-c). For caption see facing page 
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FIGURE 5. Vertical displacement as a function of distance along the x-axis for a load moving along 
the x-axis with velocity (a) 0 ms-', (b) 17.5 ms-', (e) 20 ms-', ( d )  25 ms-', (e) 45 ms-'. Other 
parameters are as shown in table 1. 

where wo and w,, determine the range over which damping is significant. This form of 
C ( o )  can be derived from a superposition of exponential memory functions with 
constant strength for which the relaxation time is continuously distributed (see the 
Appendix). Models of this type have been found to apply to other complex 
geophysical media (Aki & Richards 1980). The value of Q was chosen to be 20 so that 
the decay of the calculated forward-radiating flexural wave was similar to that 
observed by Squire et al. (1988) (the backward-radiating gravity wave is not strongly 
affected by attenuation in the ice sheet). The frequency dependence of the real part 
of the shear modulus and the coefficient of internal friction, Q-I ,  in this model are 
shown in figure 4. A more appropriate model for the damping can easily be 
incorporated when more data on attenuation in sea ice become available. 

The results for the vertical displacement as a function of distance along the x-axis 
for a moving load are shown in figure 5 .  They show the same features identified 
previously both experimentally (e.g. Squire et al. 1988; Takizawa 1988), and 
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FIGURE 6. Maximum vertical displacement as a function of load speed 

Horizontal velocity, u (m/s) 

theoretically (e.g. Hosking et al. 1988; Davys et al. 1985), namely a quasi-static 
region (u < 17.5 ms-l), a transition region (17.5 ms-' < u < 21 ms-'), a region with 
backward- and forward-radiating waves (21 ms-' < u < 55 ms-'), and the gradual 
extinction of the backward wave as u approaches ( g H ) ;  = 55 ms-' as expected from 
the discussion in $4. 

The maximum displacement is plotted against load speed in figure 6, which 
demonstrates how the displacement is amplified by a factor >2.5 near the critical 
speed in agreement with the above-mentioned experimental results. 

In  $3  we investigated the validity of asymptotic thin-plate theory for a stationary 
load and found i t  to be useful for r > 1 .  We would expect a similar result for the 
validity of asymptotic theory to apply for moving loads since for practical load 
speeds (U e (Glm);) the structure of the thick-plate Green's function is the same as 
that of the thin-plate Green's function ; that is, they have essentially the same poles 
with the same weights. 

6.  Conclusions 
We have developed formulae appropriate to a uniform plate of finite thickness, 

with a view to describing the nea,r-field response to a concentrated load incorporating 
the effects of viscous damping in the ice sheet so as to obtain the behaviour a t  near 
critical speeds. 

The response is given by a pair of Green's functions, G ,  and G,, whose general form 
is described in $2. Explicit formulae for the values taken by these functions on the 
upper surface of the plate are contained in (2.33) and (2.34). Equations (2.34) can be 
used to compute the displacement field at the surface of the ice for any reasonable 
value of the load speed. Equally explicit formulae for points in the interior could be 
derived. Such formulae are needed to represent the stress and strain distributions in 
the near field, i.e. in the vicinity of a concentrated load - one whose spread is 
comparable with or smaller than the thickness of the plate. The zero-frequency limits 
of G ,  and G4, given by (3.1), manifest short-wavelength behaviour which is sharply 
different from that of the classical thin-plate formulae. The corresponding short- 
distance behaviour of the displacement variables, u, and $,, is given by (3.9). 
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The treatment of the finitc-thickness problem given here has, in our view, clarified 
thc limitations of the classical thin-plate theory. The latter is justified by the small 
valuc of the coupling parameter p' or, equivalently, the condition 

1 G  
h<--  

pg 1-v' 

Corrections to the classical theory, in the form of higher powers of k2 and w 2 ,  can be 
obtained from the formulae derived here. They become increasingly significant as 
distance from the source is reduced. In  fact our calculations indicate that thin-plate 
theory is in error by greater than 5% for r less than 20h, 

A perhaps surprising result of the general analysis of $2 is the emergence of a long- 
range component of shear strain. This contribution, which falls off with the square 
of the distance, must eventually dominate the asymptotic field. But, as shown in $3, 
for the values of p2 likely to obtain in practice, the tail would become dominant only 
a t  distances on the order of fifteen characteristic lengths. 

Finally, the response to a moving load with near critical velocity is sensitive to 
damping forces, as expected. The asymptotic pattern is given by (4.12) in terms of 
the critical velocity, U,, and wavenumber k,. The amplitude is seen to exhibit a 
resonant-type peak as the velocity, U ,  passes through its critical value. We have 
shown that the peak value is limited by a factor of order 

where 7 is a relaxation time characterizing the dissipation in the ice plate, and 1 is the 
characteristic length. 

For the future, it would be interesting to take into account the effects of residual 
stresses as well as a layered plate structure. The stresses a t  various depths near the 
load can be computed. It will be important to allow for creep of the ice, and also to 
consider the case of an elastic-plastic plate. 

We are very grateful to John Haines for informing us of the seismic techniques and 
their suitability for the problem of the ice sheet of finite thickness and for advice on 
computational techniques. 

Appendix. The viscoelastic model 
Equation (5 .3)  may be derived by assuming a memory function of the form 

where E is the strain, u is the stress, and 

Y ( t )  = zA5e-"jt, A, 2 0,a5 2 0. 
5 

This is equivalent to 

with Y ( t )  = ZB5djt, B5 2 0, p5 2 0 
5 

3 F I. Y 226 
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(cf. Hosking et al. 1988) when the A,,a, are related to the B,,B, by an appropriate 
transformation. Taking 

f ( w )  = J-, f(t)  eiwt dt 
W 

(A 1) implies 

so G(w)  is positive for all frequencies, whatever the values of A,  and aj. If the 
relaxation times are continuously distributed thcn 

and if 

For wo < w < w,  

so 

a: A(a)  d a  
a,-iw a - iw  

7,  w Q < W < w ,  

0, otherwise, 
A(a)  = 

A(a)  da d a  W , - l W  
~ = 7 - = q In (A). lo a-iw wg a - i w  W Q  - I W  

ReG(w) 2 1 
Q = ~ Im G ( w )  = (;)[ ,+lnk)],  

where Q-' is the coefficient of internal friction. If (1/7) & In ( w J w )  then 7 = 2 / ( x & )  
and 

Hence, for large Q, 

and 

where c is the phase velocity of shear waves given by (G/rn)f. 
The square appears in (5.3) because (A 5) was originally discovered empirically for 

geophysical media (Aki & Richards 1980) and the frequency-dependent shear 
modulus was taken to be related to the square of the frequency-dependent phase 
velocity. For large Q (small attenuation) (5.3) and (A 3) are the same. 
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